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1.  Introduction

Manipulation of electromagnetic waves using advanced func-
tional surfaces (also called engineered surfaces) has received 
considerable attention in the last decade [1, 2]. Some of the 
applications of those advanced functional surfaces include, 
for instance, anomalous reflection/refraction [3], radar cross 
section reduction (RCS) [4, 5], surface plasmon polariton cou-
plers [6], cloaking [7] and polarization conversion (or rota-
tion) [8].

Electromagnetic waves manipulation (and RCS reduction) 
of the backscattered EM-waves using metasurfaces (the 2D 
engineered surface equivalence of metamaterials) has received 
considerable interest recently [9–12] due to its extraordinary 
capability to manipulate EM waves in a very efficient manner. 
Manipulation of EM-waves based on coding, digital and pro-
grammable metasurface was proposed recently in [13–29]. 

Coding a metasurface (in its 1-bit form) requires two unit cells 
of 0 and π reflection phases; in other words, there is about 
180  ±  37° phase difference between their reflection phases. In 
[14], a 1-bit coding metasurface was proposed for the manip-
ulation of the backscattered EM-waves and RCS reduction 
around 10 GHz (7.8 GHz–12 GHz) by carefully coding (‘0’ or 
‘1’) the unit cells across the 1-bit metasurface aperture using 
a unit cell of subwavelength size (a  =  5 mm  ≈  0.166λ10 GHz). 
In [15], planar metasurfaces of 1-bit coding, 2-bit coding, 
and multi-bit coding for the manipulation and diffusion of 
THz waves were proposed using self-similar Minkowski 
closed loop like metallic resonators and the optimum distri-
bution of the unit cells across the metasurface aperture was 
achieved using a particle swarm optimization algorithm. In 
[16], anomalous reflection (diffusion) at THz band using a 
conformal coding metasurface was proposed based on two 
unit cells formed with/without a gold ring resonator on top 
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Abstract
The design of low cost 1-bit reflective (non-absorptive) surfaces for manipulation of 
backscattered EM-waves and radar cross section (RCS) reduction at W-band is presented 
in this article. The presented surface is designed based on the reflection phase cancellation 
principle. The unit cell used to compose the proposed surface has an obelus (division symbol 
of short wire and two disks above and below) like shape printed on a grounded dielectric 
material. Using this unit cell, surfaces that can efficiently manipulate the backscattered RCS 
pattern by using the proposed obelus-shaped unit cell (as ‘0’ element) and its mirrored unit 
cell (as ‘1’ element) in one surface with a 180°  ±  35° reflection phase difference between 
their reflection phases are designed. The proposed surfaces can generate various kinds of 
backscattered RCS patterns, such as single, three, or four lobes or even a low-level (reduced 
RCS) diffused reflection pattern when those two unit cells are distributed randomly across 
the surface aperture. For experimental characterization purposes, a 50  ×  50 mm2 surface is 
fabricated and measured.
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of a polyimide dielectric substrate grounded by a gold film 
layer. In [9], a 3-bit coding reflective surface was proposed 
for RCS reduction around 14 GHz using a unit cell composed 
of a symmetric split ring and a cut wire to realize the 3-bit 
coding. In [10], an RCS reducer surface based on cross polari-
zation conversion was proposed with nearly 100% polariza-
tion conversion efficiency from about 9.4 GHz–19.2 GHz. In 
[12], a 1-bit coding metasurface for RCS reduction was pre-
sented and the distribution of the unit cells which has three 
resonance frequencies was optimized using a genetic algo-
rithm to achieve the best RCS reduction results. In [18], a flex-
ible, non-directional 1-bit coding metasurface RCS reduction 
within a terahertz (THz) frequency band using square metallic 
ring resonators was distributed across the RCS reducer sur-
face aperture. Recently, high optical transparence coding 
metasurface utilizing a flexible indium-tin-oxide (ITO)-based 
substrate was proposed in [22] for RCS reduction from about 
8–15 GHz.

In this article, the design of a 1-bit millimeter wave 
(W-band) reflective (non-absorptive) surface for EM-wave 
manipulation and RCS reduction is presented. The proposed 
surface is composed by an array of unit cells of obelus (short 
wire and two disks above and below) like shaped resonators, 
patterned on one side of a dielectric substrate with a solid 
PEC ground on the other side. A 1-bit RCS reducer surface 
of random distribution of the obelus-like unit cell (as ‘0’ ele-
ment) and its mirrored unit cell (as ‘1’ element), and can effi-
ciently diffuse back the incident EM waves, is also presented 
based on the proposed unit cell, as will be shown in the next 
sections.

2.  Unit cell design

The design of the presented surface begins with the design 
(characterization) of the unit cell used. The proposed surface 
is composed of an array of obelus-like shaped metallic reso-
nators backed by a solid (continuous) metal ground plane and 
separated by a dielectric substrate (εr  =  10.2 and h  =  1.27 mm) 
[30], as shown in figure 1(a). In order to assess the reflection 
characteristics of this unit cell, a series of full-wave numer
ical simulations are performed using the Frequency-Solver 
(based on the finite element method) of the commercial soft-
ware package CST Microwave Studio [31], where the unit 
cell is placed in the xy-plane (around the origin point) and 
surrounded by a periodic boundary conditions in the x and y 
directions with open boundary conditions used along the  ±z 
direction. The normally incident EM wave is then excited 
using a Floquet port. For the sake of completeness and clarity 
of the analysis, a pair of normal symmetric axes named the 
v-axis and u-axis are introduced along the  ±45° directions, 
relative to the x- and y-axes, as shown in figure 1(b). Using the 
aforementioned simulation setup in CST Microwave Studio, 
the magnitude and phase of the reflected waves under the 
normal incidence of v-polarized and u-polarized EM-waves 
are computed and the results are presented in figures 1(c) and 
(d). As can be seen in figure 1(c), a high reflection magnitude 
is achieved for the waves reflected from both the v-axis and 

u-axis with reflection phase changes between  ±180° versus 
frequency, and there is a clear phase difference as a result of 
the anisotropy of the unit cell. The calculated phase difference 
between the reflected waves from the diagonal axes (v-axis 
and u-axis) is presented in figure 2. As can be seen, a phase 
difference of about 180°  ±  35° is achieved from about 85 GHz 
to 92 GHz. To further understand the reflection characteristics 
of the proposed unit cell, the unit cell is simulated under an 
x-polarized (and y-polarized) EM-wave and the results are 
presented in figure 3. In this article, the reflectance under the 
x- and y-polarized EM-waves is defined as Rxx  =  |Exr|/|Exi|, 
Ryy  =  |Eyr|/|Eyi|, Rxy  =  |Exr|/|Eyi| and Ryx  =  |Eyr|/|Exi| [9, 10]. 
Here, the subscripts x and y denote the polarization direction 
of the EM waves, and the subscripts i and r represent the inci-
dent EM waves.

Figure 1.  (a) Layout of the proposed unit cell: 
L  =  2.3 mm, A  =  2 mm, g  =  0.2 mm, R  =  0.35 mm, copper 
thickness  =  0.016 mm, εr  =  10.2 and thickness h  =  1.27 mm.  
(b) Polarization of the incident and reflected waves. Reflection  
(c) magnitude and (d) phase of the proposed unit cell.
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3.  Reflective 1-bit surface design

The goal of this section is to investigate the capability of the 
unit cell proposed in the previous section to be used to design 
a reflective surface that can efficiently manipulate backscat-
tered EM-waves and the backscattered RCS patterns (both 
shape and level) of a bare metal plate. More important is the 
phase difference between the reflected waves along v-axis and 
u-axis presented in figure 2 of the linearly polarized incident 
EM waves along those axes. The calculated phase difference 
between the reflected waves from the diagonal axes shows that 
a phase difference of about 180°  ±  35° is achieved from about 
85 GHz to 92 GHz.

To design a 1-bit coding reflective surface as shown in 
[14] and to realize a 180°  ±  35° reflection phase difference 
between the waves reflected from the adjacent unit cells, 
obelus-like shape unit cell (‘0’ element) and its mirrored unit 
cell (‘1’ element) as shown in figure 4 are used together to 
compose the RCS reducer surface. Assuming that the x- or 
y-polarized EM-waves are impinging on the surface. Then 
this x- or y-polarized EM-wave would be broken into two 
components (Eiu and Eiv) along the u-axis and v-axis with 90° 
between them. However, because of the anisotropy of the unit 
cells, the reflected components (Eru and Erv) will experience a 
180°  ±  35° of phase difference between them and, to realize a 
reflection phase cancellation across the 1-bit aperture surface, 

both the ‘0’ element and ‘1’ element can be distributed across 
the surface aperture in a certain manner. The cancellation 
of the reflected waves, in other words, the RCS reduction, 
and the manipulation of the backscattered power, are highly 
dependent on the arrangement of the unit cells across the RCS 
reducer surface aperture.

To validate this hypothesis, four 1-bit surfaces of unit 
cell distribution shown in figures  5 and 6 are designed and 
named as: Surface #1, Surface #2, Surface #3 and Surface 
#4, respectively. The presented 1-bit surfaces have an overall 
aperture size of 16  ×  16 mm2 (8  ×  8 unit cells). Its important 
here to mention that in contrast to the other three presented 
designs, Surface #4 has a random distribution of the ‘0’ ele-
ment and ‘1’ element unit cells across its aperture and can be 
considered as a 1-bit RCS reducer surface [14, 15]. The goal 
of this random distribution of unit cells is to further diffuse the 
backscattered energy into many directions in the half space 
in front of the 1-bit surface. The four presented RCS reducer 
surfaces in figures 5 and 6 are simulated using T-solver of the 
commercial software CST Microwave Studio [21], where the 
proposed surface is placed in the xy-plane (around the origin 
point) and surrounded by open boundary conditions in all 
directions. The plane wave excitation source is used to simu-
late an incident wave from a source located at a large distance 
from the proposed surface. In combination with far-field mon-
itors, the RCS of the surfaces is calculated.

The computed RCS 3D patterns under normal incidence 
are presented in figures 5 and 6 and they show that the pre-
sented designs can efficiently control the shape of the 
backscattered patterns. For instance, based on the unit cell 
distribution across the surface aperture, various backscattered 
patterns can be obtained, such as single beam, three beams, 
four beams and diffused reflection using Surface #1, Surface 
#2, Surface #3 and Surface #4, respectively. Compared to 
the classical case in which the incident and reflected angles of 
EM-waves are equal according to Snell’s law of reflection, the 
presented designs can efficiently manipulate the shape of the 
backscattered energy with un-equal incidence and reflection 
angles. More important is the backscattered diffused pattern 
of Surface #4 in which there is no dominated lobe and inci-
dent EM-waves are redistributed on many low-level lobes in 
the half-space in front of the surface as a result of the destruc-
tive interference (and phase cancellation), which leads to a 
considerable RCS reduction.

Figure 2.  Reflected phase difference of the reflected waves 
polarized along the u-axis and v-axis.

Figure 3.  Reflection characteristics of the proposed unit cell under 
normal incidence x- and y-polarized EM-waves.

(a) (b)

Figure 4.  Front view of the (a) ‘0’ element and (b) ‘1’ element 
rotated with an angle of  ±45° with respect to the x- or y-axes.
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M K T Al-Nuaimi et al

4

To greater understand the backscattered characteristics of 
the presented RCS reducer surfaces, the far-field RCS rec-
tangular patterns in different planes (φ  =  0°, φ  =  45°, and 
φ  =  90° planes) under normal incidence are presented in 
figure 7 for Surface #4. For comparison purposes, identical 
simulations were conducted with a bare PEC plate of equiva-
lent geometry to that of the presented designs. In the case of 
Surface #4 of random distribution of unit cells across its aper-
ture, as can be seen in figure 7, the backscattered energy is 
reduced in all directions (all planes), not only in the boresigth 
direction, and the incident energy is re-distributed on many 
low-level minor lobes in the half space in front of the surface. 
The monostatic RCS versus the frequency of Surface #3 and 
Surface #4, along with their equivalent PEC sheet, are com-
puted using the CST Microwave Studio and the results are 
presented in figure  8. RCS reduction of more than 6 dBsm 
is achieved from about 85 GHz to 92.2 GHz. The 2D E-field 
distribution of the back reflected energy in front of a bare PEC 
plate and Surface #4 is presented in figure 9, which shows 
that, for a bare PEC case, the reflected energy is a single lobe 
of high level along the boresight direction for all phi angles. 

On the other hand, and as can be seen in figure  9(b), the 
reflected energy is distributed on the half space in front of 
Surface #4 as many low-level lobes. Furthermore, the ability 
of Surface #4 (random distribution surface) to manipulate 
the backscattered RCS pattern under oblique incidence of 
EM-waves is investigated as well. Here, two cases are consid-
ered when θinc  =  10° and 45° and the backscattered RCS char-
acteristics of Surface #4 and its equivalent bare PEC plate are 
investigated; the results are presented in figure 10. As can be 
seen in figures 10(a) and (b) for a bare PEC plate, the incident 

(a)  (b)

(c)  (d)

(e) (f)

Figure 5.  Unit cell distribution map of (a) Surface #1 and  
(b) Surface #2. Layout of (c) Surface #1, (d) Surface #2 RCS 
reducer surfaces and their RCS 3D patterns in (e) and (f).

(a)                                                             (b)

(c)                                                             (d)

(e)                                                             (f)

Figure 6.  Unit cell distribution map of (a) Surface #3 and  
(b) Surface #4. Layout of (c) Surface #3, (d) Surface #4 RCS 
reducer surfaces and their RCS 3D patterns in (e) and (f).

Figure 7.  Backscattered RCS patterns of Surface #4 and its 
equivalent PEC plate.

J. Phys. D: Appl. Phys. 51 (2018) 145105
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EM-waves are reflected as high level lobes in a very predict-
able manner, exactly as stated by the general law of reflection 
(Snell’s Law) with θinc  =  θreflection. On the other hand, and for 
Surface #4 under the same angle of incidence, the backscat-
tered RCS pattern has a diffuse reflection pattern shape of 
many low level lobes in all directions in the half space in front 
of Surface #4.

4.  Fabrication and measurement results

To further verify the presented design, a sample surface is 
fabricated using PCB technology. The fabricated sample con-
sists of 25  ×  25 unit cells (aperture area of 50  ×  50 mm2), as 
shown in figure 11, and etched on a RT/duroid 6010 high fre-
quency laminate (εr  =  10.2, h  =  1.27 mm) [30]. The measure-
ments are performed inside an anechoic chamber using the 
measurement setup shown in figure 12(a). The sample under 
test is placed inside a foam material, and then it is (the sample 
and the foam) fixed inside and surrounded by absorbers to 
reduce the reflections from the unwanted surroundings. Two 

linearly polarized rectangular horn antennas are fabricated 
using a 1 mm thick copper material and used as the emitter 
and receiver as shown in figure 12(b) along with waveguide 
transition parts used. The two horn antennas, serving as the 
transmitter and receiver, are connected (via millimeter wave 
extenders and flexible cables) to an Agilent N5245A network 
analyser, which is calibrated using Agilent V11644A mechan-
ical cal-kit. The millimeter wave extender modules allow for 
extending the frequency range of the Agilent N5245A network 
analyzer up to 75–100 GHz [32, 33]. The horn antennas are 
placed adjacently (with slices of absorbers between them to 
reduce the mutual coupling) as high as the fabricated sample 
in the experiment with enough distance (R) between the horn 
antennas and the surface under test to avoid the near field 
effect. The distance R is calculated using a very well-known 
far-field region formula R  >  (2D2/λ) in [34], where D is the 
surface aperture size and lambda is the free space wavelength. 

Figure 8.  Monostatic RCS versus frequency plot.

Figure 9.  Backscattered 2D RCS plots of (a) bare PEC plate and 
(b) Surface #4.

Figure 10.  Backscattered RCS 3D patterns under oblique incidence 
of EM-waves in dBsm. PEC plate: (a) θinc  =  10° and (b) θinc  =  45°. 
Surface #4: (c) θinc  =  10° and (d) θinc  =  45°. All surfaces are 
placed in the xy-plane.

Figure 11.  Photograph of the fabricated cross-polarization 
conversion surface.

J. Phys. D: Appl. Phys. 51 (2018) 145105
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Because of the small aperture size of the surface under test 
and to get more accurate measured results with low-ripple, 
both the IF bandwidth and the output power have been chosen 
carefully [22, 23].

The measured co-pol and cross-pol reflected waves are pre-
sented in figures 12(c) and (d) for frequencies from 84 GHz 
to 94 GHz. The small acceptable discrepancies between the 
measured and simulated results in figure 3 can be attributed 
to (i) fabrication inaccuracies of the surface, (ii) the misalign-
ments between the antennas and the surface under test during 
the measurements, where, with the help of a laser pointer, a 
manual alignment is performed [22, 23], (iii) in the simulation, 
the proposed surface is excited with a far-field plane wave, 
which is not the case in the measurements where a couple 

of horn antennas are used instead, (iv) in the simulation, the 
plane wave is normally incident on the proposed surface, 
which is not the case in measurements where the antennas had 
to be tilted with a certain angle and the plane wave will not hit 
the surface with an exactly normal angle.

5.  Conclusion

In this article, the design of low cost reflective surface for 
EM-wave manipulation and RS reduction for 84 GHz to 94 GHz  
band is presented and investigated both numerically and 
experimentally. The presented design can efficiently manipu-
late the shape and level of the backscattered EM waves and 
various backscattered patterns ranging from a single beam, 
three beams and four beams, and diffuse reflection is achieved.
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